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Purpose. During percutaneous interventions knowledge of needle position and orientation is crucial to get effective 

diagnostic (e.g. biopsies) or therapeutic results (e.g. thermal ablation). Automated needle tracking approaches are 

anticipated to reduce the duration of percutaneous interventions, due to the reduction of manual slice positioning 

steps. Passive tracking methods have the advantage that no additional hardware is needed. In the past, conventional 

image processing methods have been employed for this task
1,2

. Recently, deep convolutional neural nets (CNN) 

were used in image processing with excellent results
3
. This work investigates the capability of a deep learning 

algorithm to detect needles in porcine in-vivo images.  

Methods. The CNN was trained on image data acquired during MR-guided swine studies (10 animals).  All images 

were acquired in an IRB approved study (cf. [2]). The bSSFP image data (BEAT IRTTT, Siemens Healthineers, 

Erlangen) contains different needle paths, slice orientations, and matrix sizes. A total of 1979 images containing a 

needle artifact have been manually annotated (non-clinician) and split into training and validation sets by study to 

minimize similarity of training and validation images (1634/345). During training, augmentation (rotation, zoom, 

translation) was randomly applied on every image to create well distributed artifact positions and sizes. The 

algorithm was implemented with Tensorflow
5
 and trained on an NVIDIA Tesla (V100-SXM2-16GB) for 250 

epochs (8 h). An Encoder-Decoder model similar to UNet
4
 was designed. The collapsing arm was five blocks deep 

with each block containing two convolutional layers (3x3-kernel, ReLU) followed by a batch norm and a 2x2-max 

pooling. The number of filters is successively doubled after each pooling. The input is symmetrically padded such 

that the valid padding during convolution is compensated and the output image has the same size as the input. In the 

decoding part, the transposed convolution is followed by concatenation of activation maps from the encoding part 

and two convolutional layers. As loss function a sigmoid-cross-entropy with pixel wise Gaussian weighting by 

distance to the needle was used (optimizer: adaptive gradient descent).  

Results. Model complexity and the hyper parameters dropout rate, learning rate, number of epochs, loss weight 

scale and L2 kernel regularizing scale have been chosen by comparing the inference on the validation dataset. In 

Figure 1 the inference of representative images from the validation set thresholded at 0.5, 0.6 and 0.7 is shown. On a 

test subset thresholded at 0.6 and filtered by TP score >0.1 (319 images with acceptable performance) the segmented 

area corresponding to the needle was extracted. The Euclidian distance [mm] to the annotated tip position (Median= 

4.4, Q60=5.24, Q90=16.9) and angular difference [°] to the label (Median=0.2, Q60=1.1, Q90=6.8 ) was derived.  

Conclusions. The initial results show that CNNs can be employed to successfully detect a needle in interventional 

in-vivo MR images. Images in which needles are clearly separated from tissue are segmented precisely (Fig. 1a), but 

the algorithm needs to be improved on images that contain banding artifacts of the same size as the needle (Fig. 1b). 

The results show that the algorithm could benefit from additional information like pulse sequence parameters to 

learn the orientation dependent artifact appearance and an AI based position extraction. In a next step, the algorithm 

will be trained on larger number of datasets and human in-vivo image data. The method is a promising approach to 

create a robust and general method for tracking needles in MR-guided interventions. 
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